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LETTER TO THE EDITOR 

Critical dynamics of a dilute central force network with 
partial bond bending forces 

G D Hughes?, C J Lambert? and D Burton$ 
t Department of Physics, University of Lancaster, Lancaster LA1 4YB, UK 
$ Marconi Maritime Applied Research Laboratory, Unit 33-35, Cambridge Science Park, 
Milton Road, Cambridge CB4 4FX, UK 

Received 31 January 1990 

Abstract. Numerical results are presented for the dynamical properties of a dilute, central 
force, triangular network with 60" bond bending forces. The rigidity percolation threshold 
PR for such a network lies between the connectivity percolation threshold and the central 
force rigidity percolation threshold. A LU factorisation technique is used to determine the 
eigenvalues of the dynamical matrix and the results combined with finite size scaljng to yield 
values for PR and the fracton dimensionality d of 0.40 < PR =s 0.405 and 1.25 C d =s 1.3. 

During the past decade, despite an early suggestion to the contrary (de Gennes 1976), 
it has become clear that electrical networks constitute a different universality class from 
elastic structures. Indeed, recent work has shown that elastic networks themselves divide 
into different universality classes. Whilst a variety of models with varying degrees of 
complexity have been examined (Sen et a1 1985, Garcia-Molina et a1 1988, Odagaki 1989) 
much theoretical work to date has focused on dilute networks with single bond strengths , 
or their superelastic counterparts. 

Several authors have also addressed the question of whether or not for a given 
dimensionality d ,  elastic networks with a single bond strength only, themselves divide 
into different universality classes. The main evidence for this division comes from 
numerical calculations on bond dilute central force triangular networks. If bond bending 
forces are included between all bonds emanating from a site, an elasticity exponent 
(Zabolitzky et a1 1985, Sahimi 1986) of fbb = 3.96 +. 0.04 is obtained, whereas early 
estimates (Day et a1 1986) of the same exponent for a lattice with central forces only, 
yieldf,,, = 1.4 t 0.2. Recently however (Roux and Hansen 1988), the latter value has 
been questioned and a very different estimate off,,, = 3.15 k 0.5 has been obtained. If 
the latter estimate is correct, then the question of whether or not dilute two-dimensional, 
percolating elastic networks, with a single bond strength only, divide into more than one 
universality class, remains open. 

In this letter we address this question by examining the dynamical properties of a 
new model, which falls between the two single bond strength models described above. 
The model comprises a central force triangular network with 60" bond bending forces 
only. This is a new model for elasticity percolation. To our knowledge, not even the 
rigidity percolation threshold of this structure is known. In what follows, we demonstrate 
that the model possesses dynamical exponents which differ from the full bond bending 
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Figure 1. This figure shows a typical configuration 
of central force bonds y and angular bonds CY in 
the vicinity of an arbitrary site i .  As an example, 
the bond aassociated with the angle elik is present 
because both central force springs connecting i to 
j a n d  i to k are present. If either of these springs is 

removed, then the bond bending term associated 
a 

0 
J k with Oiik is set to zero. 

universality class and are in fact rather close to the values obtained using early estimates 
(Day et a1 1986) for f0,. The potential energy for the network, obtained by summing 
over all central force bonds yg, connecting nearest neighbours (ij) and all 60" bonds 
ag,g,k associated with a triplet of nearest neighbours (i jk) (see figure 1), where g, = 1 
with probability P and g, = 0 otherwise, is given by 

In this expression E., is a unit vector along bond ij, U ,  is the displacement of site i and 6 d , k  
is the deviation from 60" of the angle between neighbours j and k of i. In what follows, 
w e s e t a =  y =  1. 

For an infinitely large system, if 6 is the correlation length of the network near its 
rigidity percolation threshold PR,  then the long wavelength velocity of sound C varies 
as C2 - g-@, where 8 is related to the mass, correlation length and elasticity exponents 
p, U and f by the expression (Alexander and Orbach 1982) 

8 = f / u  - p / u .  ( 2 )  
For a frequency w below the crossover frequency w e  - C/E - lj-(2+e)'2 one expects a 
Debye-like integrated density of states per unit volume of the form 

N ( w )  - wd/Cd (0 -e U,.). (3) 
More generally, invoking a single parameter scaling hypothesis, one expects for an 
infinitely large system 

= ( w d / C d > g ( W / q )  = E - d f ( d q >  (4) 
where f ( a )  is a dimensionless function of the dimensionless frequency Q = w/wt .  The 
assumptionf(Q) + Qd for large Q and that for large Q, N ( w )  is independent of E ,  yields 
the result d = [2d/(2 + e)]. The resulting integrated density of states per unit volume 
for these higher frequency fractons, is of the form N ( w )  - cod, By analogy with equation 
(3), d is the effective dimensionality which characterises the frequency dependence of 
the fracton spectral density, in much the same way that the Hausdorff dimension d = 
d - p / u  (Stinchcombe 1985), characterises the mass density of the infinite percolating 
cluster. 

For a system of finite size L ,  the system size provides a second length scale, which 
must be included in the scaling relation for N(o). In this case equation (4) is replaced 
by 

N ( w )  = E - d g ( o / a +  E/L) = L - d f ( o / w , ,  6 / L )  ( 5 )  
where f and g are new scaling functions, wL = L(2+e)'2 and E is a function of both P and 
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L.  For 5 
(Stinchcombe 1985) 

L ,  one expects 5 to be independent of the system size L and of the form 

5 -  / P -  P R I - ' .  (6) 
However, as P approaches P,, since cannot exceed the system size, one expects E/L 
to approach a value of order unity. Under the assumption that for large L ,  at P = P,  
this value approaches a limit a, equation ( 5 )  can be used to determine both the rigidity 
percolation threshold PR and the parameter 8, by first computing N ( w )  versus w for 
various values of L. For a given choice of P and 8, plots of N(w)Ld versus wL-(2+e)/2 
are constructed. If P = PR and 8 is correctly chosen, equation (4) predicts that for large 
L ,  the plots will fall onto a universal curve f( SZ , a). Thus by performing a search of the 
P ,  6' space, the correct values of 8 and P,  are simultaneously determined. 

The parameter 8 is the elastic equivalent of the anomalous diffusion exponent which 
arises in random walker simulations for the dynamical properties of percolating net- 
works (Alexander and Orbach 1982). To our knowledge, such simulations have not 
been performed on models of elasticity percolation. Nevertheless, using the values for 
fcen andfbb quoted above, along with the corresponding values for 0 and v ,  estimates for 
Ocen and 8 b b  can be obtained from equation (2). For the full bond bending model 0 = 5 /  
36 and v = 4/3, which yields 8 b b  = 2.87 0.04 and hence d b b  = 0.82 * 0.01. For central 
forces only v = 1.05 * 0.15 (Day et a1 1986). In this case, we are aware of no quoted 
value for b in the literature. However, if all dangling bonds are removed from the 
spanning cluster, the mass exponent for the resulting percolating backbone has been 
estimated (Day et a1 1986) at 0.06?8,;;, which provides an upper limit for 0. (The lower 
limit for /.3 is of course zero.) Hence iffcen = 1.4 ? 0.2, then e,,, = 1.3 t 0.5 and dcen = 
1.2 k 0.2. On the other hand, Roux and Hansen's value forfcen/v yields e,,, = 2.9 i 0.5 
and d,,, = 0.8 * 0.1. In what follows, we compare these results with values of 8 and d 
obtained for the model defined by equation (1). 

To compute N ( w ) ,  for the partial bond bending model of equation (1) the cor- 
responding dynamical matrix was LU factorised using standard APMATH 64 sparse matrix 
routines on a FPS 264. Results for a triangular network of L2 sites with periodic boundary 
conditions were obtained for L = 12,24,36 and for values of P ranging from P = 0.39 
to P = 0.415 in steps of 0.05. For P = 0.40, figure 2 shows the density of squared 
frequencies dN(w)/d ( w 2 )  for the largest of these system sizes. The higher frequency 
region (w b 0.5) of this curve is not expected to obey scaling, since its behaviour is 
dominated by the Debye cut-off of the lattice. On the other hand, values of P and 8 can 
be found, for which the fracton region (w  < 0.5) clearly exhibits scaling. A limited 
selection of our results for the scaled, integrated density of states is shown in figure 3. 
For each system size, the results were averaged over 108 configurations, yielding error 
bars which are smaller than the symbol sizes used in the figures. For P = 0.40, 8 = 1.05 
and P = 0.405, 8 = 1.2 the results appear to scale equally well. Outside this range, the 
results do not fall on a single universal curve. The corresponding values for d = 2d/ 
(2 + 8 )  are d = 1.3 at PR = 0.40 and d = 1.25 at PR = 0.405. 

These results suggest that the 60" bond bending model analysed in this letter does 
not fall into the same universality class as a full bond bending model. Hence two- 
dimensional dilute elastic networks, with a single strength bond only, divide into at least 
two universality classes. It is interesting to note that to within the quoted error bars, the 
exponent 8 coincides with early estimates (Lemieux et a1 1985) of e,,,, so there is a 
possibility that the partial bond bending model falls into the same class as central force 
networks. To confirm the possibility, or otherwise, there is clearly a need for an accurate 
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Figure 3. Typical scaling plots of %(U) = N(w)Ld against 52 = W L - ( ~ ~ " ) / *  for system sizes 
L = 12 (A) ,  24 (V) and36 (+). ThevaluesofPare (a)0.39, (b)0.40, (c)0.405 and (d )  0.415. 
Values of w ,  for each plot, are in the range w2 < 0.5. 

numerical simulation which is capable of resolving the present discrepancy between 
quoted values of the central force exponents. We have recently initiated such a cal- 
culation and hope to report the results in the near future. 
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